

July 15, 2009 update to the Lake Mead Water Quality Forum

Selenium Management Plan

Component of the Boulder Basin Adaptive Management Plan

Background

- Selenium is a mineral in southern Nevada soil that is carried by shallow groundwater into drainage channels flowing into the Las Vegas Wash
- High selenium concentrations are a risk to an ecosystem by bio-accumulating in wildlife tissue
- Treated effluent in Las Vegas Wash has diluted the selenium from groundwater sources for decades

SCOP EIS Records of Decision

- Reduction of Las Vegas Wash flow would result in less dilution of non-effluent parameters such as selenium
- CWC to develop a Selenium Management Plan in coordination with USFWS by June 2009
 - Protect Razorback Suckers in Las Vegas Bay
 - Meet Federal and State regulations (5 µg/L in Las Vegas Wash)
- CWC to work with federal, state and local stakeholders to implement the plan

Draft Selenium Management Plan Completed on Time

BBAMP Selenium Management TAT

Clean Water Coalition (CWC) City of North Las Vegas (CNLV) City of Henderson (COH) City of Las Vegas (CLV) Southern Nevada Water Authority (SNWA) Clark County Water Reclamation District (CCWRD) Clark County Regional Flood Control District (CCRFCD) Clark County Parks and Recreation Department United States Fish and Wildlife Service (USFWS) Nevada Division of Environmental Protection (NDEP) Nevada Department of Wildlife (NDOW)

Las Vegas Wash Watershed Today

Stages of the Plan							
	(Year)						
(2009 – 2014)	(2015 – 2018)	(2018 – 2023)	(2024 +)				
No Action Until SCOP in operation Continue monitoring	 Stage 1 SCOP in operation Dilution by 85 105 mgd effluent to Wash Monitoring Water Sediments 	 Stage 2 Divert dry weather flow to CCWRD or CLV sanitary sewer and plant Flamingo Wash Monson Channel 65 - 95 mgd of 	 Stage 3 Divert more dry weather flow to CCWRD sanitary sewer and plant Duck Creek Pittman Wash 30 – 65 mgd of effluent to 				

SOLUTIONS FOR CLEAN WATER MANAGEMENT

Costs

Stage	Project	Approximate Flow Diverted (mgd)	Estimated Capital Cost (\$1,000)	Estimated Annual O&M And Treatment Costs (\$1,000)
Stage 1	Flow reduction and monitoring	0	0	Continued Monitoring
Stage 2	Monson Channel	1	700	500
Stage 2	Flamingo Wash	5	700	2,000
Stage 3	Duck Creek	6	4,900	2,000
Stage 3	Pittman Wash divider	3	2,100	1,000

Regional Benefits

- Maximizing effluent to SCOP
 - Flexible management of Lake Mead water quality
 - Protect Las Vegas Wash and Bay
 - Hydropower generation
- Tributary diversions address non-point pollutants
 - Bacteria
 - Oil and grease
 - Metals
 - Phosphorus
- Regional benefits require development of an equitable cost sharing arrangement

BBAMP Core Management Team Action 6/3/09

Accepted the Selenium Management Plan as a draft that meets EIS requirements

- Advised the CWC to complete the plan by including implementation factors such as
 - Policies
 - Financial
 - Operation
 - Action triggers
- Requested that CWC report progress to the CMT semi-annually
- Directed TATs to address the bioavailability of Selenium with the SCOP discharge

